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FORMULATION OF THE PROBLEM
AND GENERAL FORMULATION

OF THE MODEL

The equations of two-dimensional (plane and axi-
symmetric) stationary boundary layer have the form

 

(1)

(2)

 

Here, 

 

u

 

, 

 

v

 

 and 

 

x

 

, 

 

y

 

 are the velocity projections and
the coordinate axes, directed along the surface sub-
jected to flow and on the normal to this surface, respec-
tively; 

 

p

 

 is the pressure; 

 

τ

 

 is the shear stress; 

 

r

 

 = 

 

r

 

w

 

 + 

 

Ky

 

is the local radius of transverse curvature (

 

K

 

 = +1 for a
convex surface and –1 for a concave one); 

 

r

 

w

 

 is the
radius of transverse surface curvature; 

 

α

 

 = 0 denotes the
plane flow; and 

 

α

 

 = 1 denotes the axisymmetric flow.
The boundary conditions for the set of equations (1)

and (2) are written as
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where 

 

V

 

w

 

 is the rate of injection (

 

V

 

w

 

 > 0) or suction

 

(

 

V

 

w

 

 

 

< 0) 

 

and 

 

U

 

e

 

 is the velocity on the outer boundary of
the boundary layer.

We preserve the linear scales (

 

y

 

, 

 

δ

 

*

 

 for the inner 

 

i

 

and outer 

 

o

 

 regions, respectively) that are traditional for
the two-layer Klauser scheme of the boundary layer
and do not touch upon the problem of determination of
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the velocity scales 

 

V

 

si

 

 and 

 

V

 

so

 

 for the same regions to
write the model of turbulent viscosity in the following
form:

 

(4)

 

We adopt the same damping factor 

 

D

 

 and intermit-
tency factor 

 

γ

 

 as in [1],

 

(5)

 

Here, 

 

ν

 

 is the kinematic viscosity, 

 

δ

 

 is the thickness
of the boundary layer, and 

 

κ

 

 is the Karman constant.
For axisymmetric flows, the linear scale of the inner

region, which is provided by the displacement
thickness of the boundary layer 

 

δ

 

*

 

, is defined by the
relation [3]

 

(6)

 

For a plane flow (

 

r

 

w

 

  

 

∞

 

), expression (6) assumes
the conventional form

 

(7)

 

For flows in which the shear stress 

 

τ

 

 varies mono-
tonically from the maximum value on the wall 

 

τ

 

w

 

 to
zero on the outer boundary, i.e., which satisfy the con-
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Abstract—The procedure successfully used in the construction of an algebraic model of turbulence for flows
with an adverse pressure gradient [1] is used for the construction of a more general model of turbulence allow-
ing for both the direct and cross effect of the factors acting simultaneously, namely, the longitudinal pressure
drop, injection (suction) of a gas through a porous surface, and the transverse surface curvature. In contrast to
the model proposed in [2] and based on the use of the Bradshow–Ferriss–Atwell equation for the turbulent
stresses in determining the velocity scale in the outer region, the model suggested by us is fully based on the
equation for the first moments written in terms of the law of the wall. The latter fact makes it possible to use
only two empirical constants, as in [1], and to eliminate the stage of “tuning” the model, as in [2], which is asso-
ciated with the fitting of three additional empirical constants characterizing the diffusion of shear stress under
the effect of three external factors, namely, the pressure drop, injection (suction), and transverse curvature. In
so doing, the testing results indicate that the proposed model proves to be quite competitive both with the model
of [2] and with the most representative differential models of turbulence.
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dition (∂(τ)/∂y)y = 0 ≤ 0, the available computational
experience [1, 2, 4] is indicative of the fact that one and

the same scale, i.e., the dynamic velocity (V∗  = ),
may be used as the velocity scales Vsi and Vso: Vsi =
Vso = V∗ .

In flows with a nonmonotone pattern of variation of
the shear stress with a maximum of τ within the layer,
i.e., which satisfy the condition (∂(τ)/∂y)y = 0 > 0, the

quantity Vsi =  may be adopted as the scale Vsi. As
for Vso, in the plane case, we will determine it by the

maximum value of τm: Vso = . The position of the
point of maximum of τ and the value of τm may be
obtained directly from the equation of motion with due
regard for the fact that ∂(τ)/∂  = 0 [1, 2]. The
method of determining Vso in the axisymmetric case
will be discussed in detail below.

THE VELOCITY SCALE
IN THE INNER REGION Vsi

To determine the velocity scale in the inner region,
we use Eqs. (1) and (2) written in variables of the law
of the wall [5]

(8)

We eliminate the transverse velocity v from Eq. (1)
using continuity equation (2) to obtain

(9)

In Eq. (9),  = τ/τw, B∗  = Vw/V∗  is the injection (suc-

tion) parameter and r+ = rV∗ /ν.

We assume that the convection terms (first term on
the right-hand side of (9)) in the inner region may be
ignored and confine the treatment to the particular case
rw = const to derive

(10)

The integration of this equation from zero to η
yields the expression for the distribution of shear stress
in the inner region of the boundary layer,

(11)

With due regard for the previously postulated corre-

lation between τ and Vsi (Vsi = ) and relation (11)
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for the shear stress, the expression for the velocity scale
in the inner region assumes the following form:

(12)

VELOCITY SCALE IN THE OUTER
REGION Vso

To determine the velocity scale Vso for a plane flow,
we assume that the boundary between the inner and
outer regions (ym) coincides with the point of maximum
of the shear stress (τm), i.e., with the point at which the
condition ∂τ/∂y  = 0 is valid. The boundary
between the regions is treated as a line on which the
balance (local equilibrium) of force effects of all factors
acting on the flow including the convection, injection
(suction), and the pressure gradient is attained.

In contrast to the plane flow, in the axisymmetric
flow, in connection with the emergence of an additional
linear scale (rw), the equation of motion expresses the
balance of moments of all forces acting on the flow.
Therefore, the boundary (ym) between the inner and
outer regions may be provided by the point at which the
maximum of the moment of shear stress (τmrm) is
attained, i.e., the point at which the condition
((∂(rτ)/∂y  = 0) is valid. In this case, the velocity
scale will be defined by the value of τm that takes place
at the point of maximal moment of shear stress rather
than at the point corresponding to the maximal value of
τ = τmax.

In both cases, to determine both the maximal shear
stress τm in a plane flow and τm at the point of the max-
imal moment of shear stress in an axisymmetric flow,
one can use the integral of equation of motion (9). This
equation written in variables of the law of the wall is
valid in the entire inner region including its boundary
with the outer region defined as described above. How-
ever, before the integration of this equation, we will
perform some simplifications. In particular, it can be
demonstrated that the effect of transverse curvature on
the convection, expressed by the second summand in
the first term on the right-hand side of Eq. (9), proves to
be minor in the region of the logarithmic velocity pro-
file regardless of the value of parameter δ/rw. In addi-
tion, as previously, the treatment will be confined to the
case of rw = const, drw/dx = 0.

With due regard for the estimates made and limita-
tions, Eq. (9) may be written in the following form:

(13)

Vsi = V*
1

1 Ky/rw+
----------------------- 1 B*ϕ dp

dx
------ y

τw

----- 1
K
2
---- y

rw

-----+ 
 + + .

)y ym=

)y ym=

∂τ
∂η
------

ν
V*

2
-------

dV*
dx

----------ϕ2 ν
V*τw

------------dp
dx
------ B*

rw

r
-----dϕ

dη
------ K

τ
r+
----.–+ +=



HIGH TEMPERATURE      Vol. 40      No. 3      2002

TURBULENT BOUNDARY LAYER 401

We integrate this equation from the wall to the
boundary between the inner and outer regions (0 ≤ η ≤
ηm) to obtain

(14)

The condition of existence of a maximum of the
shear stress within the boundary layer,

(15)

follows directly from Eq. (13) and boundary conditions
on the wall (3).

For a plane flow (rw  ∞), this condition is simpli-
fied in view of the vanishing of the last term on the
right-hand side of equality (15). If condition (15) is
valid, i.e., with a certain correlation between the “exter-
nal” factors (longitudinal pressure drop, injection (suc-
tion), transverse curvature), a local equilibrium (bal-
ance) of moments of all forces acting on the flow is
established on the boundary between the inner and
outer regions. The condition which expresses this bal-
ance follows directly from Eq. (9) with due regard for
the vanishing of the derivative of the moment of shear
stress: (∂(rτ)/∂η  = 0. Given the previous assump-
tions of the possibility of ignoring the effect of trans-
verse curvature on the convection and rw = const, the
condition of local equilibrium takes the form

(16)

One can easily obtain an analog of this condition for
a plane flow if one notes that the factor rw/rm in the sec-
ond term on the right-hand side of Eq. (16) goes to

unity at rw  ∞. We eliminate the parameter 

from expression (14) using condition (16) to obtain

(17)
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In inverting the integrals appearing on the right-
hand side of relation (17), we use their representation in
the form of decreasing asymptotic expansions obtained
by repeated integration by parts. We confine ourselves
to two-term representations, which provide for the nec-
essary accuracy in the calculation of integrals, to obtain

(18)

(19)

(20)

We use the distribution of  in the inner region
given by Eq. (11) for the detailing of  on the right-
hand side of Eq. (20) to derive

(21)

The relations for the parameter  (17) and repre-
sentations of integrals (18) and (19) appearing in this
relation include the parameter dϕ/dη = f(η), which
characterizes the form of the law of the wall in one or
another flow. The available experimental data on the
velocity profiles in boundary layers are indicative of the
fact that the generalized law of the wall [2, 6–9] may be
written in the form

(22)

We return to relation (17) to substitute equalities
(18), (19), and (21) into it. Then, after necessary simpli-
fications and with due regard for the fact that Vso =

, we obtain the expression for the velocity scale
in the inner region,

(23)
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(24)

The set of relations (4)–(7), (12), and (23), (24)
forms the suggested algebraic model of turbulent vis-
cosity for wall boundary layers with the maximum of
shear stresses within the layer. Note that the range of
validity of the obtained model of turbulence is limited
by conditions (15) and (16).

We will further treat some particular cases and con-
fine ourselves to writing only the velocity scale in the
outer region Vso.

Φm
1

κϕ m

----------
1 B*ϕm+

rm/rw

-----------------------, rm rw ym.+= =

(1) The flow on a plane (rw  ∞) impenetrable
(B∗  = 0) surface in the presence of an adverse pressure

gradient (dp/dx > 0):

(25)

This model was first proposed in [1]. In the latter
paper, the results of its fairly detailed testing are also
given, which are indicative of its high efficiency in
describing the characteristics of turbulent boundary
layers with separation.
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Fig. 2. Calculated and experimental velocity profiles and shear stresses for experiment 0141 [11] at x = 3.4 m: (a) velocity profile

in physical variables, (b) velocity profile in variables of the law of the wall, and (c) profile of shear turbulent stress . Notation
is the same as in Fig. 1.
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Fig. 1. Longitudinal distributions of the basic parameters of the boundary layer and the velocity profile for experiment 4800 [10]:
(a) friction coefficient Cf , (b) form factor ç, and (c) velocity profile at x = 3.556 m. Calculation (1) by our model (relations (4)–(7),
(12), (23), (24)), (2) by the algebraic model of [2], (3) by the Spalart–Allmaras model [13], and (4) by the Menter model [14]; dots
indicate the experimental data of [10].



HIGH TEMPERATURE      Vol. 40      No. 3      2002

TURBULENT BOUNDARY LAYER 403

(2) The flow on a plane (rw  ∞) penetrable (B∗  >
0) plate (dp/dx > 0), i.e., the model of “pure” injection:

(26)

(3) The flow on a cylindrical concave surface (K =
−1):

(27)
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RESULTS OF TESTING THE MODEL

The fact that the experimental data are limited, in
particular, their absence for flows subject to a simulta-
neous effect of all factors treated above (pressure gradi-
ent, injection (suction), transverse curvature), compli-
cates considerably full-scale testing of the suggested
model. In view of this, in order to test the model, calcu-
lations were performed for turbulent boundary layers
for which reliable experimental data are available in the
literature. Boundary layers on a flat surface were
treated in the presence of a moderate (experiment 4800
[10]) and high (experiment 0141 [11]) adverse pressure
gradient, as well as a boundary layer with a high
adverse pressure gradient on a cylinder subjected to
longitudinal flow [3] and on a flat penetrable surface (in
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Fig. 3. Longitudinal distributions of the basic parameters of the boundary layer and the profile of shear turbulent stress for experi-
ment DF [3]: (a) friction coefficient Cf , (b) form factor ç, and (c) shear stress at x = 0.931 m. Notation is the same as in Fig. 1.

Fig. 4. Longitudinal distributions of the basic parameters of the boundary layer and the velocity profile for experiment 0241 [12]:
(a) friction coefficient Cf , and (b) form factor H, (c) velocity profile at x = 1.168 m. Notation is the same as in Fig. 1.
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the presence of injection) [12]. In addition, the results
of calculations using the suggested model were com-
pared with the results obtained on the basis of other,
most representative models: the algebraic model of [2],
the Spalart and Allmaras differential model with a sin-
gle equation for turbulent viscosity [13], and the
Menter differential k–ω model [14]. Note that the so-
called reverse method was used [15] in the calculations
of boundary layers with a pressure gradient.

The calculation results are given in figures in the
form of longitudinal distributions of the friction coeffi-

cient Cf = 2τw/ρ , the form factor of the boundary
layer H = δ*/θ (θ is the momentum thickness), the
velocity profiles u/Ue = f(y) and u+(y+), and the shear

stress – /  = f(y).

Analysis of the results given in Figs. 1–4, as well as
of the testing results in studies [1, 4], makes it possible
to conclude that, for the treated class of flows (bound-
ary layer), the efficiency of the suggested algebraic
model is not inferior to that of much more complicated
present-day differential models.
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